Shown below are the instruments and the chromatographic conditions used to analyze aerosol sunscreen products by HS GC-MS:

Equipment

Equipment Name	Vendor	Model/Cat. No.	
Gas Chromatograph	Agilent (HP)	6890 (G1530A)	
Mass Spec. Detector	Agilent	5973 (G1098A)	
Headspace Sampler	Agilent	7697A	
ZB-624 GC Column	Phenomenex	7KG-G005-27	

Headspace Gas Chromatography-Mass Spectrometry (HS GC-MS)

Headspace Unit	Oven: 80 °C Loop: 90 °C Tr. Line: 125 °C Vial equilibration: 25 min	Column Phenomenex Zebron ZB-624 Cat # 7KG-G005-27 S/N 1078570 60 m x 0.25 mm ID x 1.40 μm f	
Inlet (Split)	Injection: 1 min (1 mL loop) GC cycle time: 35 min Vial size: 10 mL Agitation: 50 shakes/min Fill Pressure: 10 psi Liner: split with wool Gas: Helium Temp: 200 °C P: 29.6 psi Total flow: 9.5 mL/min Split Ratio: 3:1 Split Flow: 5.4 mL/min	GC Oven MSD Library	1.8 mL/min, constant flow 60 °C for 12.5 min, + 30 °C/min to 240 °C, hold 9.5 min Run time: 28 min Transfer line temperature: 250 °C Solvent delay: 0 min MSD off: 17.9 – 20.2 min Scan m/z: 29 – 300 NIST/EPA/NIH mass spectral library Version 2.0 d (April 26, 2005)

The resulting scan chromatograms were reprocessed by extracting the m/z 78 ion (molecular weight of benzene).

For the analysis of lotion products, the equipment is the same. The instrument parameters are follows:

Headspace Unit	Oven: 80 °C	<u>Column</u>	Phenomenex Zebron ZB-624	
	Loop: 90 °C		Cat # 7KG-G005-27	
	Tr. Line: 125 °C		S/N 1078570	
	Vial equilibration: 25 min		60 m x 0.25 mm ID x 1.40 μm film	
	Injection: 1 min (1 mL loop)		1.8 mL/min, constant flow	
	GC cycle time: 35 min	GC Oven	60 °C for 12.5 min,	
	Vial size: 10 mL		+ 30 °C/min to 240 °C,	
	Agitation: 50 shakes/min		hold 9.5 min	
	Fill Pressure: 10 psi		Run time: 28 min	
Inlet (Split)	Liner: split with wool	<u>MSD</u>	Transfer line temperature: 250 °C	
	Gas: Helium		Solvent delay: 0 min	
	Temp: 200 °C P: 29.6 psi		MSD off: 17.9 – 20.2 min	
	Total flow: 9.5 mL/min		SIM <i>m/z</i> 51, 78	
	Split Ratio: 3:1			
	Split Flow: 5.4 mL/min			

Standards/Samples/Spike Preparation for Aerosol and Lotion

Standard (Calibration Curve) Preparation

The benzene reference standard had a concentration of 10.0 mg/mL benzene in DMSO. A benzene stock solution was prepared by transferring $100 \text{ }\mu\text{L}$ of the reference standard solution to a 10-mL volumetric flask and diluting to volume with DMSO (0.100 mg/mL). An intermediate stock solution was prepared by transferring $250 \text{ }\mu\text{L}$ of the stock solution to a 25-mL volumetric flask and diluting to volume with DMSO (0.00100 mg/mL). Aliquots of the intermediate stock solution were transferred to 10-mL volumetric flasks and diluted to volume with DMSO to produce calibration solutions with the following concentrations (Table II).

Solutio n	Int. Sol'n (mL)	Tota l (mL)	Concentratio n (mg/mL)	Concentration (µg/mL or ppm)	In HS vial (μg)	Equivalence in Sample* (μg/g or ppm)
Cal 1	3	10	0.000300	0.300	0.300	6
Cal 2	2	10	0.000200	0.200	0.200	4
Cal 3	1	10	0.000100	0.100	0.100	2
Cal 4	0.5	10	0.0000500	0.0500	0.0500	1
Cal 5	0.25	10	0.0000250	0.0250	0.0250	0.50
Cal 6	0.125	10	0.0000125	0.0125	0.0125	0.25
Cal 7	0.050	10	0.0000050	0.0050	0.0050	0.10
Cal 8	0.025	10	0.0000025	0.0025	0.0025	0.05

Table II. Benzene Calibration Solutions Preparation

Sample Preparation – Un-spiked

The sunscreen material was sprayed into a 20-mL vial and then aliquots from the 20-mL vial were used for sample preparations. An un-spiked sample solution was prepared in triplicate by weighing approximately 0.5 g of sunscreen sample into a 10-mL volumetric flask, dissolving and diluting to volume with DMSO.

Sample Preparation – Spiked

Samples spiked with 4 ppm benzene were prepared in triplicate by weighing approximately 0.5 g of sunscreen sample into a 10-mL volumetric flask, adding 2 mL of the intermediate stock solution, then diluting to volume with DMSO.

Samples spiked with 2 ppm benzene were prepared in triplicate by weighing approximately 0.5 g of sunscreen sample into a 10-mL volumetric flask, adding 1 mL of the intermediate stock solution, then diluting to volume with DMSO.

^{*} A 0.3-ppm benzene standard solution would be equivalent to 6 ppm benzene in the sample when prepared as stated in this method (0.5 g/10 mL sample preparation)

Samples spiked with 0.4 ppm benzene were prepared in triplicate by weighing approximately 0.5 g of sunscreen sample into a 10-mL volumetric flask, adding 0.2 mL of the intermediate stock solution, then diluting to volume with DMSO.

Headspace Vial Preparation

The headspace vials were prepared for analysis by adding 5 mL of water followed by 1 mL of prepared solution.

Blank 5 mL water + 1 mL DMSO

Cal. Solutions 5 mL water + 1 mL Calibration solution

Sample 5 mL water + 1 mL sample solution (spiked or un-spiked)