Determination of Residual DNA by qPCR in mRNA

Document 1

1.0 PURPOSE

The purpose of this procedure is to detect and quantify residual plasmid DNA in mRNA Drug Substance (DS) or mRNA Product intermediate (MPI) using a real time quantitative PCR (qPCR) assay designed to amplify the kanamycin resistance gene in the plasmid.

2.0 SCOPE

This procedure applies to detection of the residual plasmid DNA in mRNA DS or MPI samples for validated constructs.

3.0 REFERENCED DOCUMENTS

Document #	Title
FRM-0736	Assay Performance Worksheet: SOP-1020 Determination of Residual DNA by qPCR
FRM-0795	SOP-1020 Residual DNA Calculation Sheet
SOP-0017	Maintaining a RNase Free Work Environment
SOP-0004	Operation and Maintenance of Thermo Class II A2 1300 Series Biological Safety Cabinets (BSC)
SOP-0033	Out of Specification (OOS)
SOP-0081	Preparation of Solutions and Samples in the GMP-Quality Control Laboratory
SOP-0082	Data Review and Reporting in the GMP Quality Control Laboratory
SOP-0210	Assignment of Assay Reference Numbers and use of QC Assay Performance Worksheets
SOP-0409	Quality Control Invalid Assay Procedure
SOP-0451	Operation and Maintenance of the QuantStudioTM 7 Flex Real-Time PCR System
SOP-0452	Personnel Flow and Gowning in the QC Bioassay Laboratories
SOP-0465	Use of the Eppendorf 5424 Microcentrifuge and the Eppendorf 5810R Centrifuge

Determination of Residual DNA by qPCR in mRNA

Document 1

4.0 RESPONSIBILITIES

Department/ Functional Area	Responsibilities
Quality Control Laboratory Personnel	 Following all procedures outlined in this document, as applicable. Maintaining a RNase-Free work environment per SOP-0017. Following proper safety measures in the GMP laboratory. Documenting sample information and preparation in the appropriate laboratory notebook or QC controlled document
Quality Control Manager or Designee	 Ensuring that laboratory personnel are trained in this procedure. Ensuring that all procedures in this document are followed when applicable. Ensure that this procedure is revised as necessary Data Review

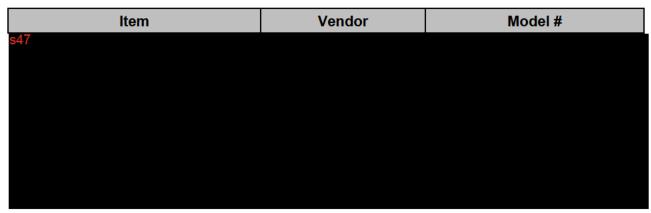
5.0 **DEFINITIONS**

Term	Definition
ABI	Applied Biosystems Instruments
Ст	The PCR cycle at which an increase in reporter fluorescence above the baseline signal can first be detected
°C	Degrees Celsius
DS	Drug Substance
DNA	Deoxyribonucleic acid
FAM	Fluorescein
GMP	Good Manufacturing Practices
IPA	Isopropyl Alcohol
MPI	mRNA Product Intermediate
MW	Molecular Weight
mL	Milliliters
mM	Millimolar
ng	Nanograms
NTC	No Template Control
PPE	Personal Protective Equipment
qPCR	Quantitative Polymerase Chain Reaction
QC	Quality Control
R ²	Coefficient of Determination (square of correlation coefficient (R))
SDM	Second Derivative Maximum
TAM	Tetramethylrhodamine
μg	Micrograms
μL	Microliters

6.0 MATERIALS

NOTE: Alternative vendors or part numbers may be used, provided the reagent grade or classification is maintained.

6.1. Reagents


Item	Vendor	Catalog#	
Nuclease-free Water	s47	s47	
Tris-EDTA buffer (TE buffer)	s47	s47	
Carrier Poly A RNA	s47	s47	
s47 Master Mix	s47	s47	
Exogenous IPC s47	s47	s47	
Standard Linearized Plasmid §47	s47	s47	

	Primer Name	Vendor	5'-Sequence-3'
Forward Primer	s47	s47	s47
Reverse Primer	s47	s47	s47
Probe	s47	s47	s47

6.2. Consumables

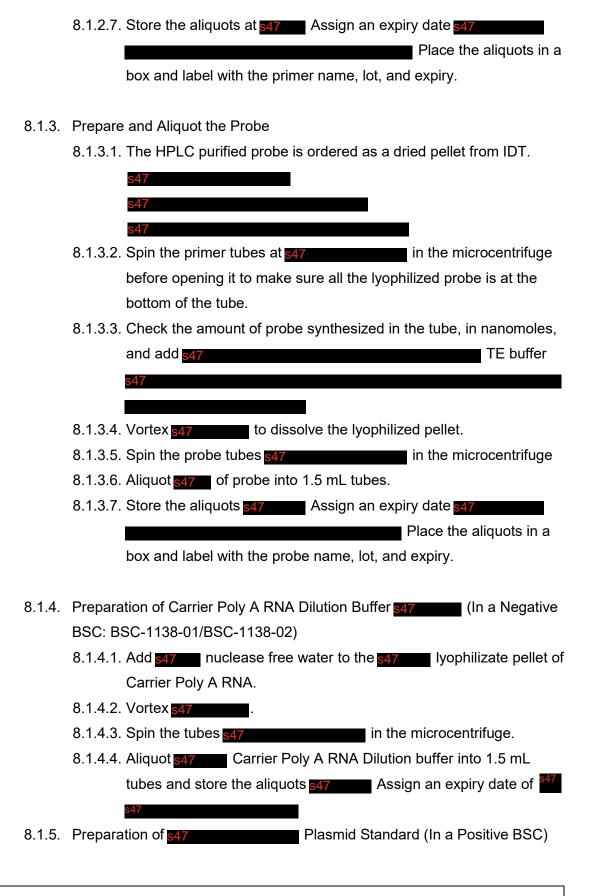
Item	Vendor	Catalog#
Adhesive PCR film	s47	s47
MicroAmp™ 8-Tube Strip with Attached Domed Caps (or equivalent)	s47	s47
Applied Biosystems™ MicroAmp™ Optical Adhesive Film	s47	s47
Applied Biosystems™ MicroAmp™ Optical 96-Well Reaction Plate	s47	s47
1.5 mL Microcentrifuge tubes	s47	s47
15 mL Corning™ Polypropylene Centrifuge Tubes	s47	s47
5 mL Falcon™ Serological Pipets	s47	s47
10 μL pipette tips	s47	s47
20 μL pipette tips	s47	s47
200 μL pipette tips	s47	s47
1000 μL pipette tips	s47	s47
Lab Armor™ Bath Beads	s47	s47

6.3. Equipment

7.0 SAFETY

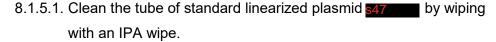
7.1. Wear proper PPE (lab coat, gloves, safety glasses). Use Moderna Safety Manual as a reference. Follow all safety information provided on material SDSs.

8.0 PROCEDURE


NOTE: Refer to Attachment 2 for BSC location map

- 8.1. Assay preparation: Perform the following preparation steps as needed.
 - 8.1.1. Preparation of Primers and Probes (In a Negative BSC)
 NOTE: Record preparation of stock primer tubes, probes and carrier RNA on FRM-0180 in the solution preparation logbook per SOP-0090.
 - 8.1.2. Prepare and Aliquot the Primers
 - 8.1.2.1. The standard desalting purified forward and reverse primers are ordered as dried DNA pellets in tubes from IDT.
 - 8.1.2.2. Spin the primer tubes \$47 in the microcentrifuge before opening them to make sure all the lyophilized primer is at the bottom of the tubes.
 - 8.1.2.3. Check the amount of primer synthesized in the tube, in nanomoles, and add \$47

 TE buffer
 - 8.1.2.4. Vortex for \$47 to dissolve the lyophilized primer.
 - 8.1.2.5. Spin the primer tubes \$47 in the microcentrifuge.
 - 8.1.2.6. Aliquot 47 of each primer into 1.5 mL tubes.


Determination of Residual DNA by qPCR in mRNA

Document 1

Determination of Residual DNA by qPCR in mRNA

Document 1

- 8.1.5.2. Aliquot s47 into 1.5 mL tubes and store s47

 Place the aliquots in a box and label with the name, lot, and expiry.

 NOTE: Record the following steps on FRM-0736. Assign

 FRM-0736 an ARN number per SOP-0210.
- 8.2. Preparation of working stock solutions (BSC-1138-01).

NOTE: working stocks will be diluted at time of use and then discarded.

- 8.2.1. Thaw the stock primer, probe, dilution buffers and qPCR kit reagents on Aluminum Bead Bath (the basket of aluminum bead is stored at 4°C before using) \$47
- 8.2.2. Dilute s47 Stock Primers s47 to the s47 working concentration.
 - 8.2.2.1. In a new 1.5 mL tube, dilute \$47 Stock Primer into \$47
 - 8.2.2.2. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.2.3. Dilute 47 Stock Probe 47 to the 47 working concentration 8.2.3.1. In a new 1.5 mL tube, dilute 47 stock probe into 47

nuclease-free water.

- 8.2.3.2. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.2.4. Preparation of Carrier Poly A RNA Dilution buffers
 - 8.2.4.1. Diluent 1 Preparation: 647 Carrier Poly A RNA.
 - 8.2.4.1.1. In a new 1.5 mL tube, dilute s47 of stock s47

 Carrier Poly A RNA into s47 nuclease-free water

 (Table 1).
 - 8.2.4.1.2. Mix by pipetting up and down at least 10 times with half the total volume.

Determination of Residual DNA by qPCR in mRNA

Table 1 Preparation of Diluent 1: **947** Carrier Poly A RNA.

Diluent	Volume of 10 μg/ μL Poly A RNA (μL)	Volume of Nuclease Free Water (µL)		
Diluent 1	s 4	s47		

8.2.4.2. Diluent 2 Preparation: 47 Carrier Poly A RNA.

Diluent 2 is for the initial dilution of Standard and Sample.

8.2.4.2.1. In a new 1.5 mL tube, dilute **§47** Diluent 1 into s47

nuclease-free water (Table 2).

8.2.4.2.2. Mix by pipetting up and down at least 10 times with half the total volume.

Document 1

Table 2 Prepa	ration of Diluent 2: s47	Carrier Poly A RNA
Diluent	Volume of Diluent 1 S47 Poly A RNA) (µL)	Volume of Nuclease Free Water (μL)
Diluent 2	s47	s47

- 8.2.4.3. Diluent 3 Preparation: 47 Carrier Poly A RNA Diluent 3 is used for the additional dilutions of Standard and Sample.
 - 8.2.4.3.1. Using a 5 mL Serological Pipets, add 47 mullease free water to a new 15 mL tube.
 - 8.2.4.3.2. Transfer 47 of Diluent 1 into the tube.
 - 8.2.4.3.3. Mix by pipetting up and down with a serological pipette at least 10 times.

Table 3 Preparation of Diluent 3: 10 ng/µL Carrier Poly A RNA

Diluent	Volume of Diluent 1 <u>\$47</u> Poly A RNA) (μL)	Volume of Nuclease Free Water (mL)
Diluent 3	s47	s4

- 8.3. Preparation of qPCR Master Mix
 - 8.3.1. Calculate the master mix multiplier using the equation below:

8.3.2. Using the multiplier from **Step 8.2.5.1**, prepare the qPCR Master Mix per **Table 4** into 15 mL conical tube.

Table 4: qPCR Master Mix Preparation

	Α	В	Actual Volume (μL)	
Reagent	Volume for 1 well (μL)	Multiplier	(Column A x Column B)	
TaqMan Fast Advanced Master Mix	s4		TBD	
Forward Primer s47	s4		TBD	
Reverse Primer s47	s 4		TBD	
Probe <mark>s47</mark>	s4		TBD	
Exogenous IPC mix s47	S	TBD	TBD	
Exogenous IPC DNA s47	s <u>4</u>		TBD	
Nuclease Free Water	s4		TBD	
Total Volume	s4		TBD	

- 8.3.3. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.3.4. Divide the master mix into tubes using 8-Tube Strips. 1 8-strip tube (8 tubes) will be needed for the standards and NTC. 1 8-tube strip with 6 tubes will be needed for each sample. Add 47 Master Mix to each tube per Table 5.

Determination of Residual DNA by qPCR in mRNA

Document 1

Table 5 The Master Mix for Controls and Samples

Tube	Standard	& Control Tubes	Sampl	Volume	
Number	Tube Name	Control	Tube Name	Sample	of Master Mix (µL)
1	STD3	Standard 3	Sample D1	Sample Dilution 1	
2	STD4	Standard 4	Sample D2	Sample Dilution 2	
3	STD5	Standard 5	Sample D3	Sample Dilution 3	
4	STD6	Standard 6	Sample D4	Sample Dilution 4	s47
5	STD7	Standard 7	Sample D5	Sample Dilution 5	547
6	STD8	Standard 8	Sample D6	Sample Dilution 6	
7	STD9	Standard 9			
8	NTC	No Template Control			

- 8.4. Prepare the No Template control (NTC)
 - 8.4.1. Add 347 of Diluent 3 into the NTC Master Mix tube.
 - 8.4.2. Mix by pipetting up and down at least 10 times with half the total volume.
 - 8.4.3. Plate 47 of NTC Master Mix into the destination wells of 96-Well Reaction Plate. An example plate map is shown in Table 6.

Table 6 Example Plate Layout

	1	2	3	4	5	6	7	8	9	10	11	12
Α	STD3	STD3	STD3	Sample1 D1	Sample1 D1	Sample1 D1	Sample2 D1	Sample2 D1	Sample2 D1	Sample3 D1	Sample3 D1	Sample3 D1
В	STD4	STD4	STD4	Sample1 D2	Sample1 D2	Sample1 D2	Sample2 D2	Sample2 D2	Sample2 D2	Sample3 D2	Sample3 D2	Sample3 D2
С	STD5	STD5	STD5	Sample1 D3	Sample1 D3	Sample1 D3	Sample2 D3	Sample2 D3	Sample2 D3	Sample3 D3	Sample3 D3	Sample3 D3
D	STD6	STD6	STD6	Sample1 D4	Sample1 D4	Sample1 D4	Sample2 D4	Sample2 D4	Sample2 D4	Sample3 D4	Sample3 D4	Sample3 D4
E	STD7	STD7	STD7	Sample1 D5	Sample1 D5	Sample1 D5	Sample2 D5	Sample2 D5	Sample2 D5	Sample3 D5	Sample3 D5	Sample3 D5
F	STD8	STD8	STD8	Sample1 D6	Sample1 D6	Sample1 D6	Sample2 D6	Sample2 D6	Sample2 D6	Sample3 D6	Sample3 D6	Sample3 D6
G	STD9	STD9	STD9									
н	NTC	NTC	NTC									

- 8.4.4. Seal the 96-Well Reaction Plate with Adhesive PCR Film.
- 8.4.5. Cap the tubes containing master mix.
- 8.4.6. Move the 96-Well Reaction Plate and the tubes containing master mix into BSC-1138-02.

- 8.5. Preparation of the test samples (BSC-1138-02).
 - 8.5.1. Thaw the sample on Aluminum Bead Bath (the basket of aluminum beads is stored at 4° C before using) at least 10 minutes.
 - 8.5.2. For each sample, into the first tube of a new 8-tube strip, dilute 47 of sample into 447 of Diluent 2 to make Sample Dilution 1.
 - 8.5.3. Mix by pipetting up and down at least 10 times with half the total volume.
 - 8.5.4. s47 dilute s47 Sample Dilution 1 with **Diluent 3** in the 8-Tube Strip with Attached Domed Caps per **Table 7**.
 - 8.5.4.1. Add 47 of **Diluent 3** to tubes 2-6 within the 8-tube stip.
 - 8.5.4.2. Add 47 of Sample Dilution 1 to tube 2 and mix by pipetting up and down with at least half the total volume of the tube.
 - 8.5.4.3. Continue diluting 47 of the previous dilution tube to the next tube containing **Diluent 3** until all 6 47 dilutions are complete.
 - 8.5.4.4. When performing 47 dilutions, mix by pipetting up and down at least 10 times with at least half the total volume before transferring to the next tube.

 Table 7: Sample \$47
 Dilutions

Dilution Name	Final Dilution	Volume of Previous Dilution (μL)	Volume of Diluent 3 (μL)
Sample Dilution 1	s47		
Sample Dilution 2		s47 Dilution 1	s47
Sample Dilution 3		s47 Dilution 2	
Sample Dilution 4		s47 Dilution 3	
Sample Dilution 5		s47 Dilution 4	
Sample Dilution 6		s47 Dilution 5	

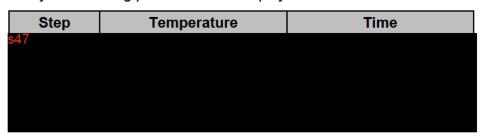
- 8.5.5. Add 47 of each Testing sample dilution into destination tube containing Master Mix from Table 5.
- 8.5.6. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.5.7. Plate 47 of Sample Master Mix into the destination wells of the 96-well Reaction plate (Table 6).
- 8.5.8. Seal the 96-well Reaction plate with Adhesive PCR film. Move the 96-well Reaction plate and the tubes containing the Standard Master Mix into BSC-1139-01/BSC-1139-02.

- 8.6. Preparation of the Standard Curve (BSC-1139-01/BSC-1139-02)
 - 8.6.1. Remove one tube of aliquoted \$47 standard \$47 standard \$47.
 - 8.6.2. In a 1.5 mL tube, dilute 47 of 47 standard into 47 Diluent 2 to make Stock 1 47
 - 8.6.3. Mix by pipetting up and down at least 10 times with half the total volume.
 - 8.6.4. Dilution of Standard samples
 - 8.6.4.1. s47 dilute the plasmid Stock 1 s47 using Diluent 3 in a new 8-tube strip per Table 8.

NOTE: 2 8-tube strips will be needed as there are 9 total standard dilutions.

- 8.6.4.2. Prepare Standard 1 by diluting s47 of Stock 1 into s47

 Diluent 3.
- 8.6.4.3. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.6.4.4. Add 47 of **Diluent 3** to tubes 2-9 within the 8-tube stip.
- 8.6.4.5. Add 47 of Standard 1 to tube 2 and mix by pipetting up and down with at least half the total volume of the tube.
- 8.6.4.6. Continue diluting 47 of the previous dilution tube to the next tube containing **Diluent 3** until all 9 47 dilutions are complete.
- 8.6.4.7. When performing 47 dilutions, mix by pipetting up and down at least 10 times with at least half the total volume before transferring to the next tube.


Table 8 Standard Dilutions

Dilution Name	Number of Copies/ µL	Volume of Previous Dilution (μL)	Volume of Diluent 3 (μL)
Standard 1	s47		
Standard 2			
Standard 3			
Standard 4			
Standard 5			
Standard 6			
Standard 7			
Standard 8			
Standard 9			

- 8.6.5. Add s47 of Standard 3 Standard 9 into their corresponding destination tubes containing Master Mix per Table 5.
- 8.6.6. Mix by pipetting up and down at least 10 times with half the total volume.
- 8.6.7. Plate 37 of Standard Master Mix (Standard 3 Standard 9) into the destination wells per Table 6.
- 8.6.8. Seal the plate with Applied Biosystems™ MicroAmp™ Optical Adhesive Film.

8.7. Running the Assay

- 8.7.1. Start the \$47 per SOP-0451.
- 8.7.2. Select Method "SOP-1020 Residual plasmid" from Run template.
- 8.7.3. Ensure all wells containing material are selected.
- 8.7.4. Ensure all wells are named according to plate map (Table 6).
- 8.7.5. Ensure standard curve concentrations are assigned appropriately.
- 8.7.6. Ensure replicates are assigned appropriately.
- 8.7.7. Verify the following parameters are displayed:

- 8.7.8. Load plate on to \$47
- 8.7.9. Start run.

8.8. Data Analysis

- 8.8.1. When the run is complete, go to the Analysis screen.
- 8.8.2. Select the Standard Curve.
- 8.8.3. Select the wells that include the samples, NTC wells, and standards 3-9
- 8.8.4. Select "Target 1" to record the R², Slope and C_T.

NOTE: Target 1 detects the residual DNA in the samples.

The standard curve of Target 2 will generate a blank graph in the report because Target 2 is Internal Positive Control (IPC).

- 8.8.5. Save the PDF report to the SDMS folder.
- 8.8.6. Open the PDF report from the SDMS folder and print it out.
- 8.8.7. Using the excel version of FRM-0795 "SOP-1020 Residual DNA Calculation Sheet", calculate the standard curve and sample concentrations. All excel formulas may be found on Attachment 1.
- 8.8.8. The copies/ μ L of each point of the standard curve and each sample dilution are calculated using the following equation: inputting the C_T , slope, and y-intercept of the standard curve.

- 8.8.9. The copies/µL of each sample dilution is then multiplied by the corresponding dilution factor to determine the neat copies/µL.
- 8.8.10. The % (g/L DNA)/(g/L RNA) (%w/w) of the sample is then calculated using the following equations:

NOTE: The Plasmid MW can be found within the Validation Report of the test construct.

- 8.8.11. The % (g/L DNA)/(g/L RNA) (%w/w) of the sample dilutions in which the C_T was within the C_T range of the standard curve are then averaged to determine the %w/w of the sample.
- 8.8.12. Save the calculation sheet **FRM-0795**, print the calculation sheet with and without formulas showing, and attach to the APW.
- 8.9. System and Sample Suitability Criteria
 - 8.9.1. R² must be **\$47**
 - 8.9.2. The slope of the standard curve must be between 47 inclusive
 - 8.9.3. Amplification must be observed in at least 2 of 3 replicates for s47 standard.

Determination of Residual DNA by qPCR in mRNA

8.9.4. The Average C_T value observed in NTC must be above the average C_T of the lowest point of standard curve.

Document 1

- 8.9.5. IPC must be amplified in NTC wells.
- 8.9.6. The %RSD of each sample dilution's software calculated concentration (copies/ μ L) for all standards and samples within the quantitative range of the standard curve must have a %RSD of 47 lf the average C_T value of a sample is higher than the average C_T of the lowest standard 47 of the standard curve, the %RSD criteria does not apply.
- 8.9.7. If all system and sample suitability criteria are met, the sample is valid. If the criteria are not met the assay is invalid. Proceed with the invalid assay procedure, SOP-0409.

8.10. Results Reporting

- 8.10.1. Have FRM-0736 reviewed per SOP-0082 and report results. The reviewer must review the formulas of the attached calculation sheet to ensure correct calculations.
- 8.10.2. Report the result (% w/w). If the value is less than the LOQ %w/w then report <(LOQ %w/w).
- 8.10.3. Refer to the specification of the test sample to determine if the %w/w is within specification. If the residual plasmid %w/w is out of specification, refer to the OOS procedure, SOP-0033.
- 8.10.4. Have FRM-0736 reviewed per SOP-0082 and report results. The reviewer must review the formulas of the attached calculation sheet to ensure correct calculations.

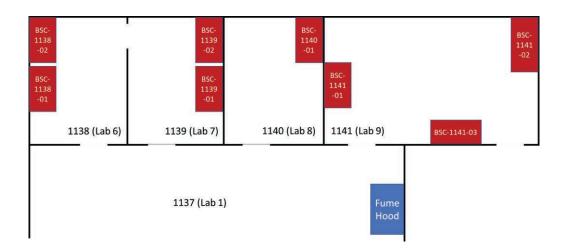
9.0 ATTACHMENTS

- 9.1. Attachment 1: SOP-1020 Residual DNA Calculation Formula Sheet (Electronically attached in Veeva)
- 9.2. Attachment 2: BSC Placement

Document 1

Determination of Residual DNA by qPCR in mRNA

10.0 REVISION HISTORY


Revision #	Effective Date	Change Details	Author
1.0	Refer to Veeva Header for Effective Date	New Document	s22

Determination of Residual DNA by qPCR in mRNA

Document 1

ATTACHMENT 2: BSC Placement

(Page 1 of 1)

P-1020 Version: 1.0 Effective Date: 09 Oct 2020 Determination of Residual DNA by qPCR in mRNA Number: SOP-1020

Document 1

Document Approvals Approved Date: 09 Oct 2020

Approval Verdict: Approved	(\$22 @ modernatx.com) Quality Control Approval 09-Oct-2020 17:00:52 GMT+0000
QA Approval Verdict: Approved	S22 @modernatx.com) Quality Assurance Approval 09-Oct-2020 17:38:13 GMT+0000

ABN 66 051 6270 & Iment 2 Merck Life Science Pty Ltd

GF, Building 1, 885 Mountain Hwy
BAYSWATER VIC 3153
AUSTRALIA
Telephone 1800 800 097

Telephone 1800 800 097 Web:www.sigma-aldrich.com

ORIGINAL TAX INVOICE

BILL TO:

TGA

s22

Biotherapeutics Section Tindal Lane

1 Tindal Lane, (via Richmond Ave)

Fairbairn ACT 2609

AUSTRALIA

SOLD TO:

THERAPEUTIC GOODS ADMINISTRATION

ACCOUNTS PAYABLE

ATTN: s22

PO BOX 100 WODEN ACT 2606

AUSTRALIA

SHIP TO:

TGA LABORATORIES

S22

Biotherapeutics Section

Tindal Lane

1 TINDAL LANE

CANBERRA AIRPORT ACT 2609

AUSTRALIA

INVOICE INFORMATION

INVOICE NUMBER: 561305594

PURCHASE ORDER NO: CCs22

SOLD TO CUSTOMER: 49610645

SHIPPING DATE:

INVOICE DATE: 24.10.2023

TERMS/DUE DATE: CREDIT CARD

s47

1/EA

s47

Distributed by Merck Life Science Pty Ltd from 1 Botero Place, Truganina, VIC 3029

ORDER ENQUIRIES: 1800 800 097 - customersupport.anz@merckgroup.com

ACCOUNT & REMITTANCE ENQUIRIES: AccountsReceivable.anz@merckgroup.com

REMIT PAYMENT TO: Merck Life Science Pty Ltd

BANK DETAILS: BANK: \$22 BSB: \$22 ACCOUNT NO: \$22

Sales Order No.: 3032299303

Contact: s22 s22

Material Qty/UOM Shipped From Delivery No Unit Price Extended
Description Route Per/Unit Price

HTS Code/Country of Origin/Batch

VC00021 1 EA AU08

rDNA-Mod-FWD

OLIGO STANDARD - DNA

2934.99.0096/US/

VC00021 1 EA AU08 S47

rDNA-Mod-REV

rDNA-Pfi-FWD

OLIGO STANDARD - DNA 1/EA

2934.99.0096/US/

VC00021 1 EA AU08

OLIGO STANDARD - DNA 1/EA

2934.99.0096/US/

ORIGINAL TAX INVOICE

INVOICE INFORMATION

561305594 INVOICE NUMBER: PURCHASE ORDER NO: CCs22

SOLD TO CUSTOMER: 49610645

SHIPPING DATE:

INVOICE DATE: 24.10.2023 TERMS/DUE DATE: CREDIT CARD

Material Description HTS Code/Country of Origin/Bat		Shipped From Route	Delivery No	Unit Price Extended Per/Unit Price
VC00021 rDNA-Pfi-REV OLIGO STANDARD - DNA 2934.99.0096/US/	1 EA	AU08		s47 1/EA
VC00021 rDNA-Mod-RM OLIGO STANDARD - DNA 2934.99.0096/US/	1 EA	AU08		S47 S47 S47
VC00021 rDNA-Pfi-RM OLIGO STANDARD - DNA 2934.99.0096/US/	1 EA	80UA		s47 s47 s47
VC00023 rDNA-Mod-Prb Oligo: Probe	1 EA	80UA		s47 1/EA

Sub Total Trans/Handling/Fee Trans/Handling Adj

Total GST

AUD AUD AUD AUD

"To ensure proper postings of your payments, please indicate invoice numbers on your payment advice & mail it to the remittance address indicated. Thank You."

2934.99.0096/US/

ORIGINAL TAX INVOICE

INVOICE INFORMATION

INVOICE NUMBER: 561305594
PURCHASE ORDER NO: CC
\$22

SOLD TO CUSTOMER: 49610645

SHIPPING DATE:

INVOICE DATE: 24.10.2023
TERMS/DUE DATE: CREDIT CARD

Material Qty/UOM Shipped From Delivery No Unit Price Extended Description Route Per/Unit Price HTS Code/Country of Origin/Batch

The Products and/or services purchased hereunder are subject to Merck Life Science Pty Ltd Terms and Conditions of same available at https://www.sigmaaldrich.com/AU/en/life-science/legal/terms-and-conditions

Merck Pty Ltd and Sigma-Aldrich Pty Ltd have merged to form Merck Life Science Pty Ltd, please arrange invoice payment to Merck Life Science Pty Ltd's bank account listed on this invoice

FCA

Total Amount Due: 0.00

Page 3/3