
Product Information ABASRIA®

NAME OF THE MEDICINE Non-proprietary Name

Insulin glargine (rbe)

Chemical Structure

ABASRIA [insulin glargine (rbe) injection] is a recombinant human insulin analogue produced by DNA technology. Insulin glargine differs from human insulin in that the amino acid asparagine at position A21 is replaced by glycine and two arginines are added to the C-terminus of the B-chain. The chemical name is 21^A -Gly- 30^B a-L-Arg- 30^B b-L-Arg insulin (human). The empirical formula is $_{C267}H_{404}N_{72}O_{78}S_6$ and the molecular weight is 6063.

CAS Number

The CAS number is 160337-95-1.

DESCRIPTION

ABASRIA is a sterile clear to colourless solution of insulin glargine (rbe) in disposable pens and cartridges for use as an injection. The 3mL pens and cartridges contain 100 IU/mL (3.6378 mg/mL) insulin glargine (rbe), zinc oxide, meta-cresol, glycerol, hydrochloric acid and sodium hydroxide for adjustment to pH 4, and water for injections.

PHARMACOLOGY ABASRIA is a biosimilar medicine.

Site and Mode of Action

The primary activity of insulin, including insulin glargine, is regulation of glucose metabolism. Insulin and its analogues lower blood glucose levels by stimulating peripheral glucose uptake, especially by skeletal muscle and fat, and by inhibiting hepatic glucose production. Insulin inhibits lipolysis in the adipocyte, inhibits proteolysis and enhances protein synthesis.

Pharmacodynamics

Insulin glargine is a human insulin analogue that has been designed to have low solubility at neutral pH. At pH 4, the pH of the Lantus injection solution, it is completely soluble. After injection into the subcutaneous tissue, the acidic solution is neutralised, leading to formation of microprecipitates from which small amounts of insulin glargine are continuously released, providing a smooth, peakless, predictable time/concentration profile and a prolonged duration of action. This allows once daily dosing to meet a patient's basal insulin needs.

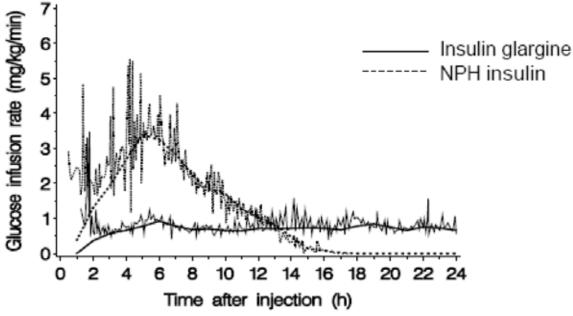
Insulin glargine is metabolised into 2 active metabolites M1 and M2.

Insulin receptor binding;

In vitro studies indicate that the affinity of insulin glargine and its metabolites M1 and M2 for the human insulin receptor is similar to the one of human insulin.

IGF-1 receptor binding:

The affinity of insulin glargine for the human IGF-1 receptor is approximately 5 to 8-fold greater than that of human insulin (but approximately 70 to 80-fold lower than the one of IGF-1), whereas M1 and M2 bind the IGF-1 receptor with slightly lower affinity compared to human insulin.

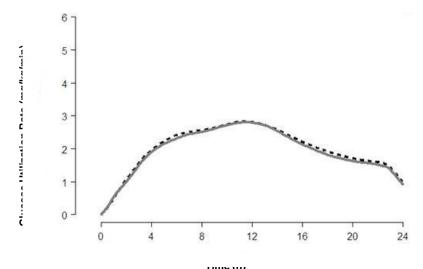

The total therapeutic insulin concentration (insulin glargine and its metabolites) found in type 1 diabetic patients was markedly lower than what would be required for a halfmaximal occupation of the IGF-1 receptor and the subsequent activation of the mitogenic-proliferative pathway initiated by the IGF-1 receptor. Physiological concentrations of endogenous IGF-1 may activate the mitogenic-proliferative pathway; however, the therapeutic concentrations found in insulin therapy, including in insulin glargine therapy, are considerably lower than the pharmacological concentrations required to activate the IGF-1 pathway.

In clinical studies, intravenous insulin glargine and human insulin have been shown to be equipotent when given at the same doses.

In euglycaemic clamp studies in healthy subjects or in patients with type 1 diabetes, the onset of action of subcutaneous insulin glargine was slower than NPH (Neutral Protamine Hagedorn) human insulin. The effect profile of insulin glargine was smooth and peakless, and the duration of its effect was prolonged compared to NPH human insulin. Figure 1 shows results from a study in patients with type1 diabetes. The median time between injection and the end of pharmacological effect was 14.5 hours for NPH human insulin, and 24 hours (the end of the observation period) for insulin glargine.

Figure 1: Activity Profile in Patients with Type 1 Diabetes

Time-action profiles of insulin glargine and NPH



Mean GIR in subjects with type 1 diabetes mellitus after a single sc injection of 0.3 IU/kg insulin glargine or NPH (hourly mean data [n=20] derived from, and superimposed on, smoothed original damp data [where n≥ 5] obtained at intervals of about five to ten minutes)

The longer duration of insulin glargine is directly related to its slower rate of absorption and supports once daily subcutaneous administration. The time course of action of insulin and insulin analogues such as insulin glargine may vary considerably in different individuals or within the same individual but is, due to the lack of a peak, less variable with insulin glargine than with NPH insulin.

In healthy subjects (n=78), a randomised, double-blind, 2-treatment, 4-period, crossover, replicate, euglycaemic clamp study was conducted to evaluate the pharmacokinetic equivalence of ABASRIA to Lantus following subcutaneous administration of a single dose (0.5 IU/kg). ABASRIA was shown to have similar pharmacokinetic (AUC $_{(0-24)}$) and C $_{max}$ mean ratios of 0.91 pmol.hr/L and 0.95 pmol/L respectively) and pharmacodynamics (R $_{max}$ and G $_{tot}$ mean ratios of 0.99 mg/kg and 0.95 mg/kg respectively) properties compared to Lantus (Figure 2).

Figure 2: Activity Profile in Healthy Subjects

Analogous results were also observed when administered as single doses of 0.3 and 1.6 IU/kg.

A randomised, investigator- and subject-blinded, single-dose (0.3 IU/kg), 2-period, 2-sequence, crossover, 42-hour euglycemic clamp study was conducted in patients with type 1 diabetes (n=20) to compare the duration of action of ABASRIA to Lantus. ABASRIA was shown to have similar duration of action (median duration 37.1 and 40.0 hours and mean duration 23.8 and 25.5 hours for ABASRIA and Lantus, respectively) and pharmacodynamic responses (R_{max} and G_{tot} mean ratios of 0.77 mg/kg and 0.91 mg/kg for ABASRIA and Lantus, respectively) compared to Lantus, although the full duration of effect in some patients was not evident at the 42 hour endpoint.

Pharmacokinetics

Absorption

After subcutaneous injection of insulin glargine in healthy subjects and patients with diabetes, the insulin serum concentrations indicated a slower, more prolonged absorption and a lack of a peak in comparison to NPH human insulin. However, the assay was unable to differentiate between the two forms of insulin (native human insulin and insulin glargine). Concentrations were thus consistent with the time profile of the pharmacodynamic activity of insulin glargine.

After subcutaneous injection of 0.3 IU/kg insulin glargine in patients with type 1 diabetes, a flat concentration-time profile has been demonstrated; this is also reflected in the wide range of T_{max} values (0 to 22.5 h) compared to 0.3 IU/kg NPH human insulin (2.5 to 10.5 h).

There were no relevant differences in serum insulin glargine levels and the duration of action after abdominal, deltoid or thigh subcutaneous administration.

The pharmacokinetic profile of ABASRIA when compared to Lantus met pre-specified equivalence criteria.

Metabolism

After subcutaneous injection of insulin glargine in healthy subjects and diabetic patients, insulin glargine is rapidly metabolised at the carboxyl terminus of the Beta chain with formation of two active metabolites M1 (21AGly-insulin) and M2 (21A-Gly-des-30B-Thrinsulin). In plasma, the principal circulating compound is the metabolite M1. The exposure to M1 increases with the administered dose of insulin glargine. The pharmacokinetic and pharmacodynamic findings indicate that the effect of the subcutaneous injection with insulin glargine is principally based on exposure to M1. Insulin glargine and the metabolite M2 were not detectable in the vast majority of subjects and, when they were detectable their concentration was independent of the administered dose.

Special Populations

Age and Gender. There were no phase 1 studies to evaluate the effects of age and race. In clinical trials, subgroup analysis based on age and gender did not indicate any difference in safety and efficacy in insulin glargine treated patients compared to the total study population.

Obesity: In clinical trials, subgroup analysis based on BMI showed no differences in safety and efficacy in insulin glargine treated patients compared to the total study population. The same was true for NPH insulin.

Renal and Hepatic Impairment. No studies were performed in patients with renal or hepatic impairment. Careful glucose monitoring and dose adjustments of insulin or insulin analogues including insulin glargine may be necessary.

CLINICAL TRIALS

Efficacy Studies (with ABASRIA)

Two phase 3 studies, one in type 1 diabetes mellitus and one in type 2 diabetes mellitus have been conducted to compare Lantus to ABASRIA. In both studies basal insulin was administered once daily.

Both studies were prospective, multinational, randomised, multicenter, 2-arm, active-controlled, parallel designed studies with a 24-week treatment period a 4-week post-treatment follow-up. The study in type 1 patients included a 28-week open label period. Both studies were designed to determine non-inferiority of ABASRIA to Lantus by change in HbA_{1c} from baseline.

Type 1 diabetic patients also used insulin lispro administered three times daily. Type 2 diabetic patients were using oral antidiabetic medicines as co-therapy. In both studies, efficacy was measured by a change in HbA_{1c} from base line to 24 weeks (see Table 1).

In both studies ABASRIA showed equivalent efficacy to Lantus. ABASRIA was non-inferior to Lantus as measured by change in HbA_{1c}.

Table 1: Change in HbA_{1c} from Baseline to Endpoint (LOCF)

	Type 1 diabetic patients		Type 2 diabe	etic patients
	ABASRIA (N=267)	Lantus (N=267)	ABASRIA (369)	Lantus (375)
Mean Change in HbA _{1c} from Baseline	-0.315	-0.429	-1.23	-1.25
LS Mean Difference (95% CI)	01.06 (-0.0	05, 0.217)	0.052 (-0.0	70, 0.175)
p-value	0.0	061	0.4	103

Abbreviations: CI=Confidence Interval; HbA_{1c}= haemoglobin A_{1c}; LOCF=last observation carried forward; LS Mean=least squares mean; N=total number of patients.

Efficacy Studies (with Lantus)

The overall efficacy of once-daily insulin glargine on metabolic control was compared to that of once-daily and twice-daily NPH human insulin in open-label, randomised, active- control, parallel studies of 2327 adult patients and 349 paediatric patients with type 1 diabetes mellitus and 1563 patients with type 2 diabetes mellitus.

Type 1 Diabetes in Adults (see Table 5)

In Phase 3 studies, patients with type 1 diabetes (Studies 3001 and 3004, n=1119) were randomised to basal-bolus treatment with insulin glargine once daily or to NPH human insulin once or twice daily and treated for 28 weeks. Regular human insulin was administered before each meal. Insulin glargine was administered at bedtime. NPH human insulin was administered once daily at bedtime or in the morning and at bedtime when used twice daily. Insulin glargine had a larger effect in reducing fasting glucose than NPH human insulin administered twice daily, but was comparable with NPH human insulin twice daily in its effect on haemoglobin A_{1c} (HbA_{1c}) and incidence of nocturnal and severe hypoglycaemia. Compared to once daily NPH human insulin, insulin glargine had a similar effect on fasting glucose and HbA_{1c}. Hypoglycaemia was reported with similar frequency during the first month of the studies (during initial titration period) after starting treatment with insulin glargine compared to NPH human insulin.

In another Phase 3 study, patients with type 1 diabetes (Study 3005, n=619) were treated for 16 weeks with a basal-bolus insulin regimen where insulin lispro was used before each meal. Insulin glargine was administered once daily at bedtime and NPH human insulin was administered once or twice daily. Insulin glargine and NPH human insulin had a similar effect on HbA_{1c} , with similar numbers of patients reporting a hypoglycaemic episode.

Type 1 Diabetes in Children (see Table 6)

In a randomized, controlled clinical study, paediatric patients (ranging in age from 6 to 15 years) with type 1 diabetes (Study 3003, n=349) were treated for 28 weeks with a basal-bolus insulin regimen where regular human insulin was used before each meal. Insulin glargine was administered once daily at bedtime and NPH human insulin was administered once or twice daily. Similar effects on HbA_{1c} and the incidence of hypoglycaemia were observed in both treatment groups.

Type 1 Paediatric Diabetes (2 to 6 Years)

A 24-week parallel group study was conducted in 125 children with type 1 diabetes mellitus aged 1 to 6 years (61 children from 2 to 5 in the insulin glargine group and 64 children from 1 to 6 in the NPH insulin group), comparing insulin glargine given once daily in the morning to NPH insulin given once or twice daily as basal insulin. Both groups received bolus insulin before meals.

Comparison of the two treatment regimens in terms of hypoglycaemia was the primary objective of the study. The composite primary outcome consisted of: continuous glucose monitoring excursions below 3.9 mmol/L; confirmed by fingerstick blood glucose (FSBG) measurements; other FSBG measurements <3.9 mmol/L; and episodes of symptomatic hypoglycaemia.

Overall, the event rate ratio of this composite outcome for once daily insulin glargine compared to NPH (given twice daily in most patients) was 1.18 (95% CI: 0.97-1.44), therefore, not meeting the non-inferiority margin of 1.15.

The rate of symptomatic hypoglycaemia events is the most commonly used and clinically relevant component of the composite outcome. Rates of symptomatic hypoglycaemia events were numerically lower in the insulin glargine group, both overall (25.5 episodes per patient-year, vs 33.0 for NPH) and overnight (2.38 episodes per patient-year, vs 3.65 for NPH).

HbA_{1c} and glucose variables were comparable in both treatment groups. No new safety signals were observed in this trial.

Table 2 summarises the primary outcome results between insulin glargine and NPH insulin.

Table 2: Summary of primary outcome results between insulin glargine and NPH insulin

Event Rate	Insulin glargine (N=61)	NPH (N=64)
All hypoglycaemia events	192.75	168.91
All symptomatic hypoglycaemia events	25.54	33.02
All low GCM confirmed by a low FSBG (<3.9)	74.61	71.60
All low CGM	270.31	262.51
All low FSBG	192.69	168.24

Note: On-treatment period for hypoglycaemia is from the first dose of IP up to 24 hours after the last dose of IP

Insulin glargine has not been studies in children below 2 years.

Type 2 Diabetes in Adults (see Table 3)

In one Phase 3 study (Study 3002, n=570), insulin glargine was evaluated for 52 weeks as part of a regimen of combination therapy with insulin and oral antidiabetic agents (a sulfonylurea, metformin, acarbose, or combinations of these drugs). Insulin glargine administered once daily at bedtime was as effective as NPH human insulin administered once daily at bedtime in reducing HbA_{1c} and fasting glucose. However, fewer patients treated with insulin glargine reported a nocturnal hypoglycaemic episode after initial titration, from study month 2 to end of study (Table 3).

Table 3: Study report 3002: Patients with nocturnal hypoglycaemia (with Lantus)

	Insulin glargine	NPH human insulin	Р
Month 2 – Week 20	10.1%	16.9%	0.0195
Week 20 – end of study	5.7%	11.4%	0.0150
Entire treatment	12.1%	24.2%	0.0002

In another Phase 3 study in patients with type 2 diabetes not using oral antidiabetic agents (Study 3006, n=518), a basal-bolus regimen of insulin glargine once daily at bedtime or NPH human insulin administered once or twice daily was evaluated for 28 weeks. Regular human insulin was used before meals as needed. Insulin glargine had similar effectiveness as either once- or twice-daily NPH human insulin in reducing GHb and fasting glucose. Fewer patients treated with insulin glargine reported nocturnal hypoglycaemia from study month 2 to end of study (Table 4).

Table 4: Study report 3006: Patients with nocturnal hypoglycaemia (with Lantus)

	Insulin glargine	NPH human insulin	Р
Month 2 – end of study	26.5%	35.5%	0.0136
Entire treatment	31.3%	40.2%	0.0160

Type 1 and Type 2 Adult Diabetes

Table 5 compares regimens of insulin glargine once daily to NPH human insulin either once or twice daily in subgroups of patients from Phase 3 studies based upon prior basal insulin regimens.

Table 5: Summary of Main Therapeutic Outcomes of the Clinical Studies in Adults (with Lantus)

Type 1 Diabe Diabetes	Treatment	Ends	study mean (mean ch	nange f	rom baseline)	
Population		n	Glycated haemoglobin (%)	n	Fasting blood glucose (mmol/L) ^a	
Previous use of once-daily basal injection regimen						
with regular human insulin	Insulin glargine NPH human insulin (once daily)	222 218	7.98 (0.01) 7.95 (-0.05)	222 218	8.4 (-0.9) 8.2 (-1.2)	
with insulin lispro	Insulin glargine NPH human insulin (once daily)	73 69	7.11 (-0.25) 7.46 (-0.23)	73 69	8.0 (-1.4) 8.7 (-0.9)	
Previous use	of more than once-daily ba	sal injed	tion regimen	-		
with regular human insulin	Insulin glargine NPH human insulin (twice daily)	334 345	7.77 (0.06) 7.69 (-0.05)	334 345	7.9 (1.3) ^b 8.7 (-0.7)	
with insulin lispro	Insulin glargine NPH human insulin (twice daily)	237 240	7.66 (-0.03) 7.64 (-0.05)	237 240	8.0 (-1.7) ^b 9.1 (-0.6)	

Type 2 Diabe	Type 2 Diabetes Mellitus					
Insulin in cor	nbination with oral antidiab	etic age	nts			
No previous	Insulin glargine	216	8.45 (-0.65)	214	7.1 (-3.3)	
insulin use	NPH human insulin (once daily)	195	8.27 (-0.63)	195	7.4 (-3.1)	
Previous insulin use	Insulin glargine NPH human insulin (once	64	9.12 (0.31)	66	7.2 (-1.1)	
	daily)	71	9.15 (0.42)	73	7.4 (-1.1)	
Insulin witho	ut oral antidiabetic agents		1	I		
Previous use	Insulin glargine	52	8.07 (-0.34)	52	8.5 (-0.8)	
of once-daily basal insulin	NPH human insulin (once daily)	48	7.92 (-0.45)	48	7.9 (-1.2)	
Previous use of more than	Insulin glargine NPH human insulin (once	207	8.15 (-0.44)	207	7.7 (-1.4)	
once daily basal insulin 211 7.96 (-0.61) 211 8.1 (-1.1)						
^a Fasting blood	glucose conversion, mg/dL/1	8=mmo	I/L			
^b p<0.05; insulin glargine compared with NPH human insulin						

Type 1 Diabetes in Children

Table 6 compares regimens of insulin glargine once daily to NPH human insulin either once or twice daily in subgroups of patients from Phase 3 studies based upon prior basal insulin regimens.

Table 6: Summary of Main Therapeutic Outcomes of the Clinical Studies in Children (with Lantus)

Type 1 Diabetes Mellitus in Children					
Treatment	Endstudy mean (mean change from baseline) n Glycated n Fasting blood glucose (mmol/L)				
Previous use of once-daily basal injection regimen					
Insulin glargine	92	9.15 (0.55)	105	9.99 (-1.34)	
NPH human insulin (once daily)	80	9.26 (0.36)	93	10.51 (-0.74)	
Previous use of more than once-daily basal injection regimen					
Insulin glargine 63 8.55 (0.12) 68 8.87 (-1.21)					
NPH human insulin (twice daily)	54	8.86 (0.01)	57	9.50 (-0.40)	

ORIGIN Trial (Study HOE901/4032)

The ORIGIN (Outcome Reduction with Initial Glargine INtervention) trial was an international, multicentre, randomised, open-label, 2x2 factorial design study conducted in 12 537 participants with impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or early type 2 diabetes mellitus and evidence of CV disease. Participants were randomised to receive insulin glargine (n=6264) (participants with IGF and/or IGT = 11.7%, early type 2 diabetes mellitus = 88.3%), titrated to a FPG of 5.3 mmol/L or less, or Standard Care (n=6273) (participants with IGF and/or IGT = 11.4%, early type 2 diabetes mellitus = 88.6%). At baseline participants had a mean age of 63.5 years, mean duration of diabetes of 5.8 years in those with pre-existing diabetes, and median HbA_{1c} of 6.4%. Median duration of follow-up was approximately 6.2 years. At the end of the trial 81% of participants randomised to take insulin glargine were still on treatment.

The primary objective of the trial was to demonstrate that insulin glargine use could significantly lower the risk of major cardiovascular endpoints compared to standard care. There were two co-primary composite efficacy outcomes. The first one was the time to the first occurrence of CV death, nonfatal myocardial infarction (MI), or nonfatal stroke, and the second one was the time to the first occurrence of any of the first co- primary events, or revascularisation procedure (cardiac, carotid, or

peripheral), or hospitalisation for heart failure.

Secondary endpoints were:

- all-cause mortality
- · a composite microvascular outcome
- · development of type 2 diabetes, in participants with IGT and/or IFG at baseline

After a median treatment duration of 6.2 years, insulin glargine did not alter the relative risk for CV disease and CV mortality when compared with standard care. There were no significant differences between insulin glargine and standard care for the two coprimary outcomes, for any individual components of the co-primary outcomes, for all-cause mortality or for the composite microvascular outcomes. The results are displayed in the table below.

Table 7: ORIGIN: Primary and Secondary Outcomes

rable 7. Okigin. Filliary and Secondary Outcomes						
	Insulin glargine (N=6264)	Standard Care (N=6273)	Insulin glargine vs Standard Care			
	Participants with Events N (%)	Participants with Events N (%)	Hazard Ratio (95% CI)			
Primary endpoints						
CV death, nonfatal myocardial infrarction (MI), or nonfatal stroke	1041 (16.6)	1013 (16.1)	1.02 (0.94, 1.11)			
CV death, nonfatal myocardial infrarction (MI), or nonfatal stroke, or hospitalisation for heart failure or revascularisation procedure	1792 (28.6)	1727 (27.5)	1.04 (0.97, 1.11)			
Secondary endpoints						
All-cause mortality	951 (15.2)	965 (15.4)	0.98 (0.90, 1.08)			
Composite microvascular outcome*	1323 (21.1)	1363 (21.7)	0.97 (0.90, 1.05)			
Components of coprima	ry endpoint					
CV death	580 (9.3)	576 (9.2)	1.00 (0.89, 1.13)			
MI (fatal or non-fatal)	336 (5.4)	326 (5.2)	1.03 (0.88, 1.19)			
Stroke (fatal or non-fatal)	331 (5.3)	319 (5.1)	1.03 (0.89, 1.21)			
Revascularisations	908 (14.5)	860 (13.7)	1.06 (0.96, 1.16)			
Hospitalisation for heart failure	310 (4.9)	343 (5.5)	0.90 (0.77, 1.05)			

^{*}with components of: laser coagulation or vitrectomy or blindness for diabetic retinopathy; progression in albuminuria; or doubling of serum creatinine or development of the need for renal replacement therapy

Median on-treatment HbA $_{1c}$ values ranged from 5.9 to 6.4% in the insulin glargine group, and 6.2% to 6.6% in the Standard Care group throughout the duration follow-up. Median FPG at the end of study in the insulin glargine group was 5.4 mmol/L, and for the Standard Care group was 6.8 mmol/L.

Over the course of this 6 year study severe hypoglycaemia was reported in 5.7% of the insulin glargine group compared to 1.9% of the Standard Care group. The rate (per 100 Patient-Years) of confirmed all hypoglycaemia events, sever hypoglycaemia events and non-severe symptomatic hypoglycaemia are shown in Table 8 below.

Over the course of this 6-year study, 42% of the insulin glargine group and 74% of the Standard Care group did not experience any hypoglycaemia.

Table 8: Severe, Non-severe and All Symptomatic Hypoglycaemia in the ORIGIN Trial

	Insulin	glargine	Standa	rd care
	Number (%) of Number per 100		Number (%) of	Number per 100
	affected patients	pt-yr	affected patients	pt-yr
Severe hypoglycaemia	352 (5.7%)	1.05	113 (1.9%)	0.30
Non-severe hypoglycaemia	3533 (57%)	10.6	1582 (25%)	4.3
All hypoglycaemia	3597 (58%)	10.7	1624 (26%)	4.4

The median of the change in body weight from baseline to the last on-treatment visit was 2.2 kg greater in the insulin glargine group than in the Standard Care group i.e. weight gain of 1.4 kg in the insulin glargine group compared to weight loss of 0.8 kg in the Standard Care group.

Cancer

In the ORIGIN trial, the overall incidence of cancer (all types combined) or death from cancers was similar between the treatment groups as shown in the Table below.

Table 9: Cancer Outcomes in ORIGIN - Time to First Event Analyses

	Insulin glargine	Standard Care	Insulin glargine vs Standard Care
	N (Events per 100 PY)	N (Events per 100 PY)	Hazard Ratio (95% CI)
Cancer endpoints			
Any cancer event (new or recurrent)	559 (1.56)	561 (1.56)	0.99 (0.88, 1.11)
New cancer events	5.24 (1.46)	535 (1.49)	0.96 (0.85, 1.09)
Death due to cancer	189 (0.51)	201 (0.54)	0.94 (0.77, 1.15)

Antibody Production

Insulin administration may cause the formation of antibodies to insulin. In clinical studies, antibodies that cross-react with human insulin and insulin glargine were observed in both NPH human insulin and insulin glargine treatment groups with similar incidences. In rare cases, the presence of such insulin antibodies may necessitate adjustment of the insulin dose in order to correct a tendency to hyperglycaemia or hypoglycaemia.

In Phase 3 clinical trials comparing ABASRIA and Lantus, similar levels of antibody production were found between the two treatment groups. The level of antibody production and subsequent patient response did not impact HbA1c, insulin dose, or incidence and rate of hypoglycaemia.

INDICATIONS

Insulin glargine is an insulin analogue indicated for once-daily subcutaneous administration in the treatment of type 1 diabetes mellitus in adults and children and type 2 diabetes mellitus in adults who require insulin for the control of hyperglycaemia.

CONTRAINDICATIONS

ABASRIA must not be used in patients hypersensitive to insulin glargine (rbe) or any of its excipients.

PRECAUTIONS

The comparability of ABASRIA with Lantus has been demonstrated, with regard to particular physiochemical characteristics and efficacy and safety outcomes (see PHARMACOLOGY and CLINICAL TRIALS). The level of comparability that has been shown supports the use of ABASRIA for the listed indication. The level of comparability that has been shown is not sufficient to designate this product as a generic version of Lantus. Replacement of Lantus with ABASRIA, or vice versa, should take place only under strict medical supervision.

Transferring a patient to another type or brand of insulin should be done under strict medical supervision. Changes in strength, brand (manufacturer), type (regular, NPH, lente, long-acting, etc.), origin (animal, human, human insulin analogue), or method of manufacture may result in the need for a change in dose.

Insulin glargine must not be diluted or mixed with any other insulin or solution.

Insulin glargine must not be administered intravenously. The prolonged duration of activity of insulin glargine is dependent on injection into subcutaneous space. Intravenous administration of the usual subcutaneous dose could result in severe hypoglycaemia.

Insulin glargine is not the insulin of choice for the treatment of diabetic ketoacidosis. Instead, intravenous rapid acting insulin is recommended in such cases.

As with all insulins, the time course of insulin glargine action may vary in different individuals or at different times in the same individual and the rate of absorption is dependent on blood supply, temperature and physical activity.

Patients, and if appropriate, their relatives, must also be alert to the possibility of hyperor hypoglycaemia, and know what actions to take.

In case of insufficient glucose control or a tendency to hyper- or hypoglycaemic episodes, the patient's compliance with all prescribed treatment regimens, injection sites and proper injection technique, the handling of the pen and all other relevant factors must be reviewed before dose adjustment is considered.

Medication errors have been reported in which other insulins, particularly short-acting insulins, have been accidentally administered instead of insulin glargine.

Hypoglycaemia

Hypoglycaemia is the most common adverse effect of insulins. The incidence of nocturnal hypoglycaemia in regimens that include insulin glargine is significantly reduced in patients with type 2 diabetes compared with regimens containing NPH human insulin. The time of occurrence of hypoglycaemia depends on the action profile of the insulins and may, therefore, change when the treatment regimen is changed.

As with all insulins, particular caution (including intensified blood glucose monitoring) should be exercised in patients who are at greater risk of clinically significant sequelae from hypoglycaemic episodes.

The prolonged effect of subcutaneous insulin glargine may delay recovery from hypoglycaemia.

In clinical studies, symptoms of hypoglycaemia or counter-regulatory hormone responses were similar after insulin glargine and human insulin both in healthy volunteers and patients with type I diabetes. However, the warning symptoms of hypoglycaemia may be changed, be less pronounced, or be absent in certain risk groups, as for example, in patients whose glycaemic control is markedly improved; in elderly patients; where an autonomic neuropathy is present; in patients with a long history of diabetes; in patients receiving concurrent treatment with certain other drugs.

Such situations may result in severe hypoglycaemia (and possibly loss of consciousness) prior to the patient's awareness of hypoglycaemia.

Renal Impairment

In patients with renal impairment, insulin requirements may be diminished because of reduced insulin metabolism. In the elderly, progressive deterioration of renal function may lead to a steady decrease in insulin requirements.

Hepatic Impairment

Although no studies have been performed in patients with diabetes and hepatic impairment, insulin requirements may be diminished due to reduced capacity for gluconeogenesis and reduced insulin metabolism.

Intercurrent Conditions

Insulin requirements may be altered during intercurrent conditions such as illness, emotional disturbances or stress.

Information for Patients

Patients should be instructed on self-management procedures including glucose monitoring, proper injection technique, and hypoglycaemia and hyperglycaemia management. Patients must be instructed on handling of special situations such as intercurrent conditions (illness, stress, or emotional disturbances), an inadequate food intake or skipped meals.

Patients must be advised that ABASRIA must not be diluted or mixed with any other insulin or solution.

Medication Errors

Accidental mix-ups between insulin glargine and other insulins, particularly short-acting insulins, have been reported. To avoid medication errors between insulin glargine and other insulins, patients should be instructed to always check the insulin label before each injection.

As with all patients who have diabetes, the ability to concentrate and/or react may be impaired as a result of hypoglycaemia or hyperglycaemia.

Patients with diabetes should be advised to inform their doctor if they are pregnant or are contemplating becoming pregnant.

Pens to be used with ABASRIA Cartridges

ABASRIA cartridges should only be used in conjunction with a Lilly HumaPen[®] (Savvio, Luxura HD or Memoir) and should not be used with any other reusable pen as dosing accuracy has not been established with other pens.

Combination with Thiazolidinediones (TZDs)

Pioglitazone in combination with insulin is associated with an increased risk of oedema and heart failure, especially in patients with underlying cardiac disease.

Effects on Fertility

In a combined fertility, prenatal and postnatal study in male and female rats at subcutaneous doses up to 10 IU/kg/day (approximately 5 times anticipated clinical exposure based on BSA), insulin glargine was maternotoxic due to dose-dependent hypoglycaemia leading to death at the highest dose. There were no effects of treatment on fertility. Similar effects were seen with NPH insulin.

Use in Pregnancy (Category B3)

There are no well-controlled clinical studies of the use of insulin glargine in pregnant women. A limited number of exposed pregnancies from Post Marketing Surveillance indicate no adverse effects of insulin glargine on pregnancy or on the health of the foetus and newborn child. To date, no other relevant epidemiological data are available.

It is essential to maintain good control of the insulin-treated patient (insulin-dependent or gestational diabetes) throughout pregnancy. Insulin requirements usually fall during the first trimester, increase during the second and third trimesters and rapidly decline after delivery. Careful monitoring of glucose control is essential in such patients. Patients with diabetes should be advised to inform their doctor if they are pregnant or are contemplating pregnancy and insulin glargine should be used during pregnancy only if the potential benefits outweigh potential risk.

Embryofetal development studies in rats and rabbits have been performed at subcutaneous doses up to 20 IU/kg/day and 2 IU/kg/day, respectively (approximately 10 times and twice anticipated clinical exposure, respectively, based on BSA). The effects of insulin glargine generally did not differ from those observed with NPH insulin in rats or rabbits. However, in rabbits dosed with 2 IU/kg/day there was an increased incidence of dilatation of the cerebral ventricles.

Use in Lactation

It is not known whether insulin glargine is excreted in significant amounts in human milk or animal milk. Many drugs, including insulin, are excreted in human milk. For this reason, caution should be exercised when insulin glargine is administered to a nursing mother. Lactating women may require adjustments in insulin dose and diet.

Paediatric Use

In general, the safety profile for patients ≤ 18 years of age is similar to the safety profile for patients >18 years. The adverse events reports received from Post Marketing Surveillance included relatively more frequent injection site reactions (injection site pain, injection site reaction) and skin reactions (rash, urticaria) in patients ≤ 18 years of age than in patients >18 years.

Data from pooled clinical trials in adults and children aged 6 to 18 years did not show a greater incidence of either injection site reaction or skin reactions in the paediatric population compared to adults.

Pharmacokinetics in children aged 2 to less than 6 years of age with type 1 diabetes mellitus was assessed in one clinical study. Plasma "trough" levels of insulin glargine and its main metabolites M1 and M2 were measured in children treated with insulin glargine, revealing plasma concentration patterns similar to adults, and providing no ABASRIA® PI_1.0_21Nov14

evidence for accumulation of insulin glargine or its metabolites with chronic dosing.

Carcinogenicity

Two year carcinogenicity studies were performed in mice and rats at subcutaneous doses up to 12.5 IU/kg/day (approximately 3 and 7 times anticipated clinical exposure based on BSA). Malignant fibrous histiocytomas were found at insulin glargine injection sites in male rats and mice. The incidence of these tumours was not dose-dependent and tumours were also present at acid vehicle control injection sites but not at saline control injection sites or insulin comparator groups using a different vehicle. The relevance of these findings to humans is unknown.

Other insulin preparations are known to cause an increase in mammary tumours in female rats. No such increase in tumours was seen with insulin glargine probably because of the lower doses of insulin glargine used in the mouse and rat carcinogenicity studies.

Genotoxicity

Insulin glargine was negative in tests for mutagenicity in bacterial and mammalian cells and for clastogenicity (*in vitro* in V79 cells and *in vivo* in Chinese hamsters).

Effects on ability to drive and use machines

The patient's ability to concentrate and react may be impaired as a result of hypoglycaemia. This may present a risk in situations where these abilities are especially important, such as driving or operating machinery. As with all insulins, use caution in patients with hypoglycaemia unawareness and in patients who may be predisposed to hypoglycaemia.

INTERACTION WITH OTHER MEDICINES

A number of substances affect glucose metabolism and may require insulin dose adjustment.

Substances that may enhance the blood glucose lowering effect and susceptibility to hypoglycaemia include: oral antidiabetic agents, ACE inhibitors, pentoxifylline, perhexiline, disopyramide, fibrates, fluoxetine, MAO inhibitors, dextropropoxyphene, salicylates, sulphonamide antibiotics.

Substances that may reduce the blood glucose lowering effect and susceptibility to hypoglycaemia include: corticosteroids, danazol, diazoxide, diuretics, glucagon, isoniazid, oral contraceptives, phenothiazine derivatives, somatotrophin, sympathomimetic agents (e.g. epinephrine [adrenaline], salbutamol, terbutaline), thyroid hormones, protease inhibitors and atypical antipsychotic medications (e.g. olanzapine and clozapine).

Beta-blockers, clonidine, lithium salts or alcohol may either potentiate or weaken the blood glucose lowering effect of insulin. Pentamidine may cause hypoglycaemia, which may be sometimes followed by hyperglycaemia.

In addition, under the influence of sympatholytic medicinal products such as betablockers, clonidine, guanethidine and reserpine, the signs of adrenergic counterregulation induced by hypoglycaemia may be reduced or absent.

ADVERSE EFFECTS

Clinical Trial Data

The following adverse reactions from clinical trials comparing ABASRIA and Lantus in 535 Type 1 patients (ABSRIA: 268; Lantus: 267) and 756 Type 2 patients (ABASRIA: 376; Lantus: 380), are listed by system organ class.

Table 10: The Frequency of Adverse Reactions in 2 Clinical Studies of ABASRIA*

	Тур	pe 1	Type 2				
System Organ Class	ABASRIA LANTUS		ABASRIA	LANTUS			
Immune system dis	Immune system disorders						
Allergic reactions**	11 (4.1%)	9 (3.4%)	21 (5.6%)	27 (7.1%)			
Metabolism and nutrition disorders							
Hypoglycaemia***	6 (2.2%)	10 (3.7%)	2 (0.5%)	3 (0.8%)			

Nervous system disorders						
Dysgeusia	0	0	1 (0.3%)	0 (0.0%)		
Skin and subcutaneous tissue disorders						
Lipohypertrophy	0	0	0 (0.0%)	1 (0.3%)		
General disorders	and administration si	te conditions				
Injection site reactions**	5 (1.9%)	3 (1.1%)	13 (3.5%)	11 (2.9%)		
Oedema	0	0	1 (0.3%)	1 (0.3%)		

^{*} Note: All values are given as ABASRIA N (%) vs. LANTUS N (%)

The following adverse reactions are from clinical trials with Lantus.

Table 11: Adverse Events in Phase 2/3 Trials (> 2%)

	NPH human insulin (n = 1784)	Insulin glargine (n= 2106)
Upper respiratory infection	330 (18.5%)	367 (17.4%)
Infection	178 (10.0%)	182 (8.6%)
Accidental injury	97 (5.4%)	101 (4.8%)
Headache	74 (4.1%)	103 (4.9%)
Injection site haemorrhage	81 (4.5%)	89 (4.2%)
Retinal vascular disorder	81 (4.5%)	82 (3.9%)
Gastroenteritis	64 (3.6%)	68 (3.2%)
Sinusitis	62 (3.5%)	68 (3.2%)
Rhinitis	63 (3.5%)	61 (2.9%)
Back pain	48 (2.7%)	57 (2.7%)
Injection site pain	13 (0.7%)	55 (2.6%)
Hypoglycaemic reaction	61 (3.4%)	54 (2.6%)
Neuropathy	45 (2.5%)	53 (2.5%)
Peripheral oedema	32 (1.8%)	42 (2.0%)
Urinary tract infection	35 (2.0%)	41 (1.9%)

Table 12: Summary of Symptomatic Hypoglycaemia Results in a Phase 3 Study in Patients Aged 2-6

		,	
Event Rate	Insulin glargine	NPH	Event Ratio
(Per patient year)			(95% CI)
Symptomatic hypoglycaemia	25.54	33.02	0.76
			(0.46. 1.25)

Table 13: Cardiovascular and Cancer Events in ORIGIN

^{**} Based on Special Topic Assessments for skin reactions and for generalised allergic responses

^{***} Hypoglycaemia ADRs reported in Table include only sever hypoglycaemia events (reported as SAEs)

	Insulin glargine (N=6264)	Standard Care (N=6273)	Insulin glargine vs Standard Care
Primary endpoints	N (Events per 100 PY)	N (Events per 100 PY)	Hazard Ratio (95% CI)
Cardiovascular			
Co-primary endpoints			
CV death, nonfatal	1041	1013	1.02 (0.94, 1.11)
myocardial infrarction (MI), or nonfatal stroke	(2.9)	(2.9)	
CV death, nonfatal	1792	1727	1.04 (0.97, 1.11)
myocardial infrarction (MI),	(5.5)	(5.3)	
or nonfatal stroke, or			
hospitalisation for heart			
failure or revascularisation			
procedure			
Components of coprima			
CV death	580	576	1.00 (0.89, 1.13)
MI (fatal or non-fatal)	336	326	1.03 (0.88, 1.19)
Stroke (fatal or non-fatal)	331	319	1.03 (0.89, 1.21)
Revascularisations	908	860	1.06 (0.96, 1.16)
Hospitalisation for heart	310	343	0.90 (0.77, 1.05)
failure			
Cancer			
Cancer endpoints			
Any cancer event (new	559	561	0.99 (0.88, 1.11)
or recurrent)	(1.56)	(1.56)	
New cancer events	524	535	0.96 (0.85, 1.09)
	(1.46)	(1.49)	,
Death due to cancer	189	201	0.94 (0.77, 1.15)
	(0.51)	(0.54)	

Over the course of this 6 year study severe hypoglycaemia was reported in 5.7% of the insulin glargine group compared to 1.9% of the Standard Care group. The rates (per 100 Patient-Years) of confirmed all hypoglycaemia events, severe hypoglycaemia events and non-severe symptomatic hypoglycaemia are shown in Table 14.

Table 14: Severe, Non-severe and All Symptomatic Hypoglycaemia in the ORIGIN

rable 14. Severe, Non-Severe and All Symptomatic Hypogrycaenila in the Oktobr				
	Insulin glargine		Standard care	
	Number (%) of affected patients	Number per 100 pt-yr	Number (%) of affected patients	Number per 100 pt-yr
Severe hypoglycaemia	352 (5.7%)	1.05	113 (1.9%)	0.30
Non-severe hypoglycaemia	3533 (57%)	10.6	1582 (25%)	4.3
All hypoglycaemia	3597 (58%)	10.7	1624 (26%)	4.4

The median of the change in body weight from baseline to the last on-treatmeth visit was 2.2 kg greater in the insulin glargine group than in the Standard Care group i.e. weight gain of 1.4 kg in the insulin glargine group compared to weight loss of 0.8 kg in the standard care group.

Hypoglycaemia

Hypoglycaemia, in general the most frequent adverse reaction of insulin therapy, may occur if the insulin dose is too high in relation to the insulin requirement.

As with all insulins, severe hypoglycaemic attacks, especially if recurrent, may lead to neurological damage. Prolonged or severe hypoglycaemic episodes may be lifethreatening.

In many patients, the signs and symptoms of neuroglycopaenia are preceded by signs of adrenergic counter-regulation. Generally, the greater and more rapid the decline in blood glucose, the more marked is the phenomenon of counter-regulation and its symptoms.

Eyes

A marked change in glycaemic control may cause temporary visual impairment, due to temporary alteration in the turgidity and refractive index of the lens.

As with all insulin regimens, intensification of insulin therapy with abrupt improvement in glycaemic control may be associated with temporary visual impairment or worsening of diabetic retinopathy. However, long-term improved glycaemic control decreases the risk of progression of diabetic retinopathy.

In patients with proliferative retinopathy, particularly if not treated with photocoagulation, severe hypoglycaemic episodes may result in transient partial or complete blindness.

Retinopathy was evaluated in clinical studies by means of retinal adverse events reported and fundus photography. The numbers of retinal adverse events reported for insulin glargine and NPH treatment groups were similar for patients with type 1 and type 2 diabetes. Progression of retinopathy was investigated by fundus photography using a grading protocol derived from the Early Treatment Diabetic Retinopathy Study (ETDRS). In a 5-year NPH-controlled study, the primary outcome was progression by 3 or more steps on the ETDRS scale at study endpoint. The results of this analysis are shown in Table 6 for both the per-protocol (primary) and Intent-to-Treat (ITT) populations, and indicate non-inferiority of insulin glargine to NPH in the progression of diabetic retinopathy as assessed by this outcome.

Table 15: Number (%) of Patients with 3 or More Step Progression on ETDRS
Scale at Endpoint (with Lantus)

	Insulin glargine (%)	NPH human insulin (%)	Difference ^{a,b} (SE)	95% CI for Difference
Per-protocol	534/374 (14.2%)	57/363 (15.7%)	-1.98% (2.57%)	-7.02% to 3.06%
Intent-to Treat	63/502 (12.5%)	71/487 (14.6%)	-2.10% (2.14%)	-6.29% to 2.09%

Difference = Insulin glargine – NPH human insulin

Injection Site and Allergic Reactions

As with any insulin therapy, lipodystrophy may occur at the injection site and delay insulin absorption. Other injection site reactions with insulin therapy include redness, pain, itching, hives, swelling and inflammation. Most minor reactions to insulins usually resolve in a few days to a few weeks.

Immediate-type allergic reactions are rare. Such reactions to insulin (including insulin glargine) or the excipients may, for example, be associated with generalised skin reactions, angioedema, bronchospasm, hypotension, or shock and may be life threatening.

Animal studies with insulin glargine have identified significant local tolerance toxicity at the injection site following repeat subcutaneous administration. Care should be taken to rotate the site of injection.

Other reactions

^b Using a generalised linear model (SAS GENMOD) with treatment and baseline HbA1c strata as the classified independent variables, and with binomial distribution and identity link function

Insulin may cause sodium retention and oedema, particularly if previously poor metabolic control is improved by intensified insulin therapy.

DOSAGE AND ADMINISTRATION

ABASRIA contains insulin glargine, an insulin analogue with a peakless glucose lowering profile and a prolonged duration of action that permits once daily dosing.

ABASRIA is for individual patient use only.

ABASRIA is given subcutaneously once a day.

ABASRIA is not intended for intravenous administration.

Replacement of Lantus with ABASRIA, or vice versa, should take place only under strict medical supervision (see PRECAUTIONS).

The desired blood glucose levels as well as the doses and timing of any antidiabetic medication, including ABASRIA, must be determined and adjusted individually. In aclinical study in insulin-naïve patients with type 2 diabetes, insulin glargine was started at a dose of 10.8 ± 4.9 IU (mean ± SD; median dose 10 IU) once daily and subsequently adjusted individually. Blood glucose monitoring is recommended for all individuals with diabetes.

Dose adjustment may also be required, for example, if the patient's weight or lifestyle change or other circumstances arise that increase susceptibility to hypo- or hyperglycaemia. Any change of insulin dose should be made cautiously and only under medical supervision.

Although absorption of ABASRIA does not differ between abdominal, thigh or deltoid subcutaneous injection sites, as with all insulins, injection sites must be rotated from one injection to the next.

Paediatric Use

ABASRIA can be safely administered to paediatric patients >6 years of age. In a study comparing insulin glargine to NPH insulin in children from 2-5 years, non-inferiority was not demonstrated in relation to the primary outcome of hypoglycaemia (see CLINICAL TRIALS). Efficacy in terms of HbA1c (a secondary efficacy endpoint) was similar between groups.

Based on the result of a study in paediatric patients, the dose recommendation for changeover to insulin glargine is the same as described for adults.

Changeover to Insulin Glargine

The initial dose of ABASRIA should be determined individually, depending on the desired blood glucose levels.

When changing from a treatment regimen with an intermediate or long-acting insulin to a regimen with insulin glargine, the amount and timing of a short-acting insulin or fast-acting insulin analogue or the dose of any oral antidiabetic drug may need to be adjusted.

In clinical studies, when adult patients were transferred from once daily NPH human insulin or ultralente human insulin to once daily insulin glargine, the initial dose was

ABASRIA® PI_1.0_21Nov14

Page 18 of 20

usually not changed. In studies when patients were transferred from twice-daily NPH human insulin to insulin glargine once daily at bedtime, the initial dose (IU) was usually reduced by approximately 20% (compared to total daily IU of NPH human insulin) within the first week of treatment and then adjusted based on patient response. There was also a slightly higher rate of injection site pain seen with insulin glargine, possibly related to the acidic nature of insulin glargine when compared with NPH insulin. The majority of injection site reactions were mild, with only one subject in each of the insulin glargine and NPH treatment groups discontinuing study medication due to injection site adverse events.

A programme of close metabolic monitoring under medical supervision is recommended during changeover and in the initial weeks thereafter. As with all insulin analogues, this is particularly true for patients who, due to antibodies to human insulin, need high insulin doses and may experience markedly improved insulin response with insulin glargine.

With improved metabolic control and resultant increase in insulin sensitivity (reduced insulin requirements) further adjustment of the dose of insulin glargine and other insulin or oral antidiabetic agents in the regimen may become necessary.

Preparation and Handling

Unopened cartridges and KwikPens

Unopened cartridges and KwikPens should be stored in a refrigerator where the temperature is between +2°C and +8°C. Do not freeze. Discard if frozen.

Keep in the outer carton in order to protect from light. Do not store next to the freezer compartment or freezer packs.

Before first use, ABASRIA must be kept at room temperature for 1 to 2 hours. ABASRIA must only be used if the solution is clear, colourless with no particles visible, and if it is of water-like consistency.

Open (in use) or unrefrigerated cartridges and KwikPens

ABASRIA cartridges or KwikPens, whether or not refrigerated, must be discarded after 28 days from first use.

Unrefrigerated cartridges or KwikPens, whether or not in use, must be discarded after 28 days. This applies irrespective of whether the cartridge or KwikPen is used immediately or is first carried as a spare for a while.

An empty cartridge or KwikPen must never be reused and must be properly discarded.

Once in use, KwikPens or a reusable injection pen containing a cartridge of ABASRIA must not be stored in the refrigerator. ABASRIA that is in use in injection pens may be kept unrefrigerated for up to 28 days, as long as the temperature is not greater than 30°C and it is kept away from direct heat and light. It must be used within a 28 day period or must be discarded 28 days after commencement of use.

Manufacturer instructions for using ABASRIA in reusable or KwikPen injection devices must be followed carefully for loading the cartridge into a reusable pen, and for attaching the needle, performing the safety test and administering the insulin injection. If the injection device is damaged, it should be discarded and a new injection device should be used.

If the reusable injection device malfunctions (see instructions for using the pen), or no pen is available, ABASRIA may be withdrawn from the cartridge into a U100 syringe and injected subcutaneously. The syringe must not contain any other medicinal product or residue. **ABASRIA must not be mixed with any other insulin nor be diluted.** Mixing or diluting can change its time/action profile and mixing can cause precipitation.

OVERDOSAGE

Symptoms

An excess of insulin relative to food intake, energy expenditure or both may lead to severe and sometimes prolonged and life-threatening hypoglycaemia.

Management

Mild episodes of hypoglycaemia can usually be treated with oral carbohydrates. Adjustments in drug dosage, meal patterns, or exercise may be needed.

More severe episodes with coma, seizure or neurologic impairment may be treated with intramuscular/subcutaneous glucagon and/or concentrated intravenous glucose. After apparent clinical recovery from hypoglycaemia, continued observation and additional carbohydrate intake may be necessary to avoid recurrence of hypoglycaemia.

For information on the management of overdose, contact the Poison Information Centre on 131126.

PRESENTATION

ABASRIA [100 IU/mL of insulin glargine (rbe)] is supplied in:

3 mL cartridges for use with a reusable pen recommended for Lilly insulin cartridges. KwikPen pre-filled insulin delivery device containing a 3 mL cartridge.

Packs of 1, 2, 5 and multipacks containing 10 cartridges (2 packs of 5 cartridges) are available. Not all pack sizes may be marketed.

NAME AND ADDRESS OF SPONSOR

Eli Lilly Australia Pty. Limited 112 Wharf Road, West Ryde, NSW 2114 AUSTRALIA

POISON SCHEDULE OF MEDICINE

S4

DATE of FIRST INCLUSION IN THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS (ARTG)

21 November 2014